On

Угловое преобразование фишера

Posted by admin


Критерий j*- углового преобразования Фишера.

Критерий предназначен для сопоставления двух выборок по частоте встречаемости интересующего исследователя эффекта. Оценивает достоверность различий между процентными долями двух выборок, в которых зарегистрирован интересующий нас эффект. Суть критерия состоит в переводе процентных долей в величины центрального угла, который измеряется в радианах, по формуле:

Ограничения: 1)если n1=2, то n2³30; 2) если n1=3, то n2³7; 3) если n1=4, то n2³5; 4) при n1, n2³5 возможны любые сопоставления.

Вычисление:

1) определить, что будет в данной задаче эффектом. Если данные, измеренные количественно, использовать критерий l для поиска оптимальной точки разделения.

2) подсчитать, сколько испытуемых в 1 выборке имеют эффект (k1), и перевести в процентную долю по формуле:
3) подсчитать, сколько испытуемых во 2 выборке имеют эффект (k2), и перевести в процентную долю по формуле:

4) перевести по таблице 8 приложения 2 процентные доли в величины им соответствующих углов.

5) найти эмпирическое значение по формуле:

6) Сопоставить эмпирические значения с критическими, где j*0,01=2,31, а j*0,05=1,64.

Различия между выборками считаются достоверными, если j*эмп³j*0,01; не значимыми, если j*эмп< j*0,05; достоверными на 5% уровне, если

j*0,05£ j*эмп <j*0,01.

Пример.С учащимися младшего школьного возраста 18 человек из полных семей и 18 из неполных проводилось исследование на определение степени допустимости лжи по тесту Р. Экмана. В таблице 51 представлены результаты мотива «избегание наказания». Можно ли утверждать, что у младших школьников из полных семей данный мотив более выражен.

Таблица 51

Количество детей с выраженностью мотива «избегание наказания»

Тип семьи Мотив выражен Мотив не выражен
полная
неполная

Решение: проверим ограничения: n1=18, n2=18>5, следовательно, применим критерий j*. Будем считать, что «есть эффект» — выраженность мотива «избегание наказания». k1=5; k2=2. p1=27,8%; p2=11,1%.

Сформулируем экспериментальную гипотезу: у младших школьников из полных семей мотив «избегание наказания» более выражен, чем у детей из неполных семей.

По таблице 8 приложения 2 определим: j1=1,111; j2=0,679.

j*эмп< j*0,05 следовательно экспериментальная гипотеза отвергается.

Ответ: у младших школьников из полных и неполных семей выраженность мотива «избегание наказания» не различается.

Предыдущая3456789101112131415161718Следующая

Дата добавления: 2016-01-26; просмотров: 789;

ПОСМОТРЕТЬ ЕЩЕ:

Программа расчета углового преобразования Фишера (фи*) предназначена для сравнения двух независимых или связанных выборок в том случае, когда результаты измерений представлены в номинальной шкале. Для расчетов используется табличный процессор Excel. Примером связанных выборок могут быть результаты, показанные участниками эксперимента до и после его проведения. Примером независимых выборок могут быть результаты, показанные участниками контрольной и экспериментальной групп. Связи с тем, что расчет углового преобразования Фишера (фи*) достаточно прост, однако расчета этого критерия нет в статистических пакетах, составлена данная программа. Особенностью использования данного критерия в том, что он может быть использован как в выборках малого (n=5), так и большого объема.

В таблице представлены результаты экзамена по математике до и после проведения эксперимента (исходные данные, представленные в таблице 16 взяты из пособия Попов Г.И. с соавт., (2007) и несколько изменены.

Таблица 16 – Результаты экзамена по математике

Контингент учащихся До эксперимента После эксперимента
n доля n доля
Учащиеся, получившие оценки 2 и 3 (эффекта нет) 15 0,33 5 0,11
Учащиеся, получившие оценки 4 и 5 (эффект есть) 30 0,67 40 0,89
Всего учащихся 45 45

Порядок расчета критерия φ*

Критерий φ* – угловое преобразование Фишера (критерий Фишера)

Формулируем статистические гипотезы.

Но: доля студентов, получивших оценки 4 и 5 до эксперимента такая же, как и после эксперимента;

Н1: доля студентов, получивших оценки 4 и 5 после эксперимента больше, чем до эксперимента.

2. Определяем значения углов φ1 и φ2, соответствующие долям;

3. Вычисляем эмпирическое значение по формуле:

4. Сравниваем эмпирическое значение критерия с критическим (представлено в таблице 2)

Таблица 2. Критические значения критерия  при различных значениях уровнях значимости α (Попов Г.И. с соавт., 2007).

α  критические значения критерия фи*
0,001 2,91
0,01 2,31
0,05 1,64
0,1 1,29

Расчет в программе

В программу введен контрольный пример. В верхней части программы показано, как должны быть представлены исходные данные в случае связанных выборок (слева) и в случае независимых выборок (справа).

Чтобы выполнить расчет, нужно заполнить клетки, выделенные желтым цветом в нижней части таблицы. После этого будет получено эмпирическое значение критерия (фи*эмп). Затем подученное значение эмпирического значения фи нужно сравнить с критическим значением (фи* крит) на заданном уровне значимости. Эти значения приведены в табл.1. Если фи*эмп больше чем фи*крит, различия между группами статистически достоверны.

Programma-rascheta-kriterija-fi.xlsx

Литература

  1. Высшая математика и математическая статистика: учебное пособие для вузов /Под ред. Г.И.Попова.- М.:Физкультура и спорт, 2007.- 368 с.;
  2. Барникова, И.Э. Информационные технологии в обработке анкетных данных в педагогике и биомеханике спорта: учеб. пособие / И.Э. Барникова; А.В. Самсонова; Национальный государственный университет физической культуры, спорта и здоровья им. П.Ф. Лесгафта, Санкт–Петербург. – СПб.: [Б.и.], 2017. – 103 с.

Критерий j*- углового преобразования Фишера.

Критерий предназначен для сопоставления двух выборок по частоте встречаемости интересующего исследователя эффекта. Оценивает достоверность различий между процентными долями двух выборок, в которых зарегистрирован интересующий нас эффект. Суть критерия состоит в переводе процентных долей в величины центрального угла, который измеряется в радианах, по формуле:

Ограничения: 1)если n1=2, то n2³30; 2) если n1=3, то n2³7; 3) если n1=4, то n2³5; 4) при n1, n2³5 возможны любые сопоставления.

Вычисление:

1) определить, что будет в данной задаче эффектом. Если данные, измеренные количественно, использовать критерий l для поиска оптимальной точки разделения.

2) подсчитать, сколько испытуемых в 1 выборке имеют эффект (k1), и перевести в процентную долю по формуле:
3) подсчитать, сколько испытуемых во 2 выборке имеют эффект (k2), и перевести в процентную долю по формуле:

4) перевести по таблице 8 приложения 2 процентные доли в величины им соответствующих углов.

5) найти эмпирическое значение по формуле:

6) Сопоставить эмпирические значения с критическими, где j*0,01=2,31, а j*0,05=1,64.

Различия между выборками считаются достоверными, если j*эмп³j*0,01; не значимыми, если j*эмп< j*0,05; достоверными на 5% уровне, если

j*0,05£ j*эмп <j*0,01.

Пример.С учащимися младшего школьного возраста 18 человек из полных семей и 18 из неполных проводилось исследование на определение степени допустимости лжи по тесту Р. Экмана.

угловое преобразование Фишера

В таблице 51 представлены результаты мотива «избегание наказания». Можно ли утверждать, что у младших школьников из полных семей данный мотив более выражен.

Таблица 51

Количество детей с выраженностью мотива «избегание наказания»

Тип семьи Мотив выражен Мотив не выражен
полная
неполная

Решение: проверим ограничения: n1=18, n2=18>5, следовательно, применим критерий j*. Будем считать, что «есть эффект» — выраженность мотива «избегание наказания». k1=5; k2=2. p1=27,8%; p2=11,1%.

Сформулируем экспериментальную гипотезу: у младших школьников из полных семей мотив «избегание наказания» более выражен, чем у детей из неполных семей.

По таблице 8 приложения 2 определим: j1=1,111; j2=0,679.

j*эмп< j*0,05 следовательно экспериментальная гипотеза отвергается.

Ответ: у младших школьников из полных и неполных семей выраженность мотива «избегание наказания» не различается.

Предыдущая3456789101112131415161718Следующая

Дата добавления: 2016-01-26; просмотров: 791;

ПОСМОТРЕТЬ ЕЩЕ:

Метод φ (угловое преобразование фи) получил широкое распространение в отечественной психологии под именем «угловое преобразование Фишера» (см.

Угловое преобразование Фишера

Гублер Е.В., 1978; Сидоренко Е.В., 2000).

Предназначен для сопоставления двух выборок по частоте встречаемости интересующего исследователя эффекта. Критерий оценивает достоверность различий между процентными долями двух выборок и не имеет ограничений по числености выборок.

Принцип метода состоит в преобразовании процентов (долей) в величину φ, распределение которой близко к нормальному.
Формула углового преобразования: φ = arcsin √p , где p — процент, выраженный в долях единицы.

Формула для оценки значимости различий долей (процентов): φ* = (φ1 — φ2) √ n1*n2/(n1+n2)  , где n1 и n2 — объемы выборок.

Ограничения применимости критерия.
Сопостовимые доли p1, p2 ≠ 0.
В численности двух выборок рекомендуется соблюдать следующие соотношения:

  • если в одной выборке 2 наблюдения, во второй должно быть не менее 30: n1=2→n2≥30;
  • n1=3→n2≥7;
  • n1=4→n2≥5;
  • при n1, n2≥5 возможны любые сопоставления.

Гипотезы:
Н0: Доля лиц, у которых проявляется исследуемый эффект, в выборке 1 не больше, чем в выборке 2.
Н1: Доля лиц, у которых проявляется исследуемый эффект, в выборке 1 больше, чем в выборке 2.

Инструкция

Введите данные (целые числа) и нажмите на кнопку «Ввести».

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *