On

Основные абиотические факторы

Posted by admin


Абиотические факторы среды

Свет. Основной абиотический фактор, поставляющий энергию для жизнедеятельности фотоавтотрофных организмов и обеспечивающий синтез основной части органического вещества на Земле, поддерживающий определенную температуру на поверхности Земли. Для живых организмов наиболее важен свет ультрафиолетовой части спектра, видимый свет и инфракрасное излучение.

Жесткий ультрафиолет с длиной волны менее 290 нм губителен для живых клеток, до поверхности Земли не доходит, так как отражается озоновым экраном. Мягкий ультрафиолет с длиной волны от 290 до 380 нм несет много энергии и вызывает образование витамина D в коже человека, он же воспринимается органами зрения многих насекомых. Видимый свет с длиной волны от 380 до 750 нм используется для фотосинтеза фототрофными организмами (растениями, фотосинтезирующими бактериями, сине-зелеными) и животными для ориентации. Инфракрасная часть солнечного спектра (тепловые лучи) с длиной волны более 750 нм вызывает нагревание предметов, особенно важна эта часть спектра для животных с непостоянной температурой тела — пойкилотермных. Количество энергии, которое несет свет обратно пропорционально длине волны, то есть меньше всего энергии несут инфракрасные лучи (рис. 373).

Рис. 373. Спектры поглощения у различных фотосинтетических пигментов. ЖУФ — жесткий ультрафиолет, МУФ — мягкий ультрафиолет)

Растения для фотосинтеза используют, в основном, синие и красные лучи. По отношению к свету их принято делить на светолюбивые (растения степей), теневыносливые (большинство лесообразующих пород) и теневые (мхи, папоротники).

Продолжительность светового дня является важным регулирующим фактором в жизни живых организмов. Сезонные и суточные изменения физиологической активности живых организмов в ответ на изменение продолжительности дня и ночи называют фотопериодизмом.

Длина светового дня, в отличие от других абиотических факторов, для каждой местности изменяется строго закономерно (известно, что самый короткий день 22 декабря, а самый длинный — 22 июня, известна продолжительность любого дня года). В результате естественного отбора выживали организмы, чьи физиологические функции регулировались продолжительностью светового дня. Если продолжительность светового дня искусственно поддерживать более 15 часов, наши листопадные деревья становятся вечнозелеными, а если весной с помощью ширмы устроить им осенний день (меньше 12 часов), их рост прекращается, они сбрасывают листву, и у них наступает состояние зимнего покоя.

Приспособленность к сезонному изменению продолжительности светового дня привела к появлению длиннодневных и короткодневных растений (рис. 374). Длиннодневные зацветают в начале лета, до осени успевают созреть плоды и семена (наши злаки — рожь, пшеница, овес), короткодневные (астры, георгины, хризантемы) — растения южного происхождения, где продолжительность светового дня около 12 часов, поэтому они у нас зацветают при коротком дне осенью.

  Рис. 374. Цветение и рост растений в зависимости от продолжительности дня и ночи.

У животных во второй половине лета и осенью происходит накопление жировых запасов, осенняя линька, кочующие и перелетные начинают свои сезонные миграции. Осенью у насекомых формируются зимующие стадии, например, бабочка-капустница зимует на стадии куколки, и если гусениц весной содержать при длине дня короче 14 часов, то к середине лета сформируется зимующая куколка, которая будет находиться в состоянии покоя несколько теплых месяцев.

Температура. Важнейший и часто ограничивающий для многих организмов абиотический фактор. Жизнедеятельность большинства организмов ограничена температурным интервалом от 0 до 40ºС, но некоторые организмы живут в горячих гейзерах, температура воды в ко-

торых достигает 70ºС, многие способны переносить отрицательные температуры в неактивном состоянии. Для того, чтобы переносить неблагоприятные температуры, у растений и животных выработались различные приспособления:

© Теплокровность птиц и млекопитающих снимает влияние небольших колебаний температуры, такие животные, способные поддерживать температуру на определенном уровне получили название гомойотермные. Животные, не способные поддерживать постоянную температуру тела, называются пойкилотермными.

© Зимняя спячка у грызунов, летучих мышей. При этом резко замедляется интенсивность обмена веществ, уменьшается частота дыхательных движений и частота сердечных сокращений, понижается температура тела.

© Зимний сон. Осенью животные накапливают большое количество жировых запасов и засыпают на несколько месяцев. При этом не происходит глубокого изменения обмена веществ, животное можно разбудить, например, можно разбудить медведя в берлоге. Такое состояние помогает перенести отсутствие пищи в зимнее время.

© Анабиоз. Временное состояние организма, при котором все жизненные процессы замедлены до минимума, отсутствуют все видимые признаки жизни.

© Состояние зимнего покоя. Наблюдается у многолетних растений, направлено на перенесение низких температур. Растения накапливают различные «антифризы», чтобы в цитоплазме клеток не образовались кристаллики льда и не разрушили клеточные структуры.

© Состояние летнего покоя. Характерно для многих раннецветущих растений (тюльпаны), для свежесобранных семян, клубней, луковиц. Наблюдается и у пустынных животных во время жаркого и сухого периода (у некоторых грызунов, черепах).

Важным экологическим фактором является и влажность. Живые организмы приспособились к сезонному изменению влажности, к жизни в зонах с различным содержанием воды в почве и воздухе. Растения засушливых зон, ксерофиты, имеют мелкие жесткие листья с хорошо развитой кутикулой, длинные корни, высокое осмотическое давление в клетках. Суккуленты (кактусы, агавы) имеют сильно развитую водозапасающую ткань, листья редуцированы в колючки и фотосинтез идет за счет стебля, корневая система расположена у поверхности и позволяет во влажные периоды запасти большое количество воды. Эфемеры — однолетние растения, успевают за короткий влажный период отцвести и образовать плоды и семена. Эфемероиды — многолетние растения, цветение которых происходит ранней весной, а летом надземные побеги полностью отмирают, засушливый период переносят под землей в виде луковиц, клубней, корневищ. Гигрофиты, напротив, приспособились к избыточной влажности и произрастают около водоемов, у них крупные листья с большим количеством устьиц слабо развитой кутикулой, слабая корневая система.

Животные также приспособились к жизни в условиях с различной влажностью. Для сохранения влаги в организме в условиях ее дефицита многие животные ведут ночной образ жизни, имеют плотные покровы и пониженное потоотделение. Некоторым животным достаточно воды, которая содержится в пище (кенгуровая крыса), некоторые могут долгое время обходиться без воды, используя метаболическую воду (верблюд около недели может не пить, используя воду, образующуюся при окислении запасов жира в горбах). Многие животные степей и пустынь могут переносить недостаток воды и высокую температуру, впадая в состояние летней спячки.

Дата добавления: 2016-05-30; просмотров: 853;

Похожие статьи:

Выделяют следующие группы абиотических факторов (факторов неживой природы): климатические, эдафогенные (почвенные), орографические и химические.

I) Климатические факторы: к ним относятся солнечное излучение, температура, давление, ветер и некоторые другие воздействия среды.

1) Солнечное излучение является мощным экологическим фактором. Оно распространяется в пространстве в виде электромагнитных волн, из которых 48% приходится на видимую часть спектра, 45% − на инфракрасное излучение (с большой длиной волны) и около 7% − на коротковолновое ультрафиолетовое излучение. Солнечное излучение представляет собой первичный источник энергии, без которого невозможна жизнь на Земле. Но, с другой стороны, прямое воздействие солнечного света (особенно его ультрафиолетовой составляющей) губительно для живой клетки. Эволюция биосферы была направлена на снижение интенсивности ультрафиолетовой части спектра и защиты от избыточной солнечной радиации. Этому способствовало образование озона (озонового слоя) из кислорода, выделенного первыми организмами-фотосинтетиками.

Общее количество солнечной энергии, достигающей Земли, примерно постоянно. Но разные точки земной поверхности получают разное количество энергии (из-за различия во времени освещенности, разного угла падения, степени отражения, прозрачности атмосферы и т.д.)

Выявлена тесная связь между солнечной активностью и ритмом биологических процессов. Чем больше солнечная активность (больше пятен на Солнце), тем больше возмущений в атмосфере, магнитных бурь, воздействующих на живые организмы. Большую роль играет также смена солнечной активности в течение суток, обуславливающая суточные ритмы организма. У человека более 100 физиологических характеристик подчиняется суточному циклу (выделение гормонов, частота дыхания, работа различных желез и т.д.)

Солнечное излучение в большой степени определяет остальные климатические факторы.

2) Температура окружающей среды связана с интенсивностью солнечного излучения, особенно инфракрасной части спектра. Жизнедеятельность большинства организмов протекает нормально в интервале температур от +5 до 400С. Выше +500 − +600 начинается необратимое разрушение белка, входящего в состав живых тканей. При высоких давлениях верхний предел температур может быть гораздо выше (до +150−2000С). Нижний предел температуры часто оказывается менее критическим. Некоторые живые организмы способны выдерживать очень низкие температуры (до −2000С) в состоянии анабиоза. Многие организмы Арктики и Антарктики постоянно живут при отрицательных температурах. У некоторых арктических рыб нормальная температура тела составляет −1,70С.

Основные абиотические факторы среды

При этом вода в их узких капиллярах не замерзает.

Зависимость интенсивности жизнедеятельности большинства живых организмов от температуры имеет следующий вид:

Рис.12. Зависимость жизнедеятельности организмов от температуры

Как видно из рис., при повышении температуры происходит ускорение биологических процессов (скорости размножения и развития, количества потребляемой пищи). Например, развитие гусениц бабочки-капустницы при +100С требует 100 суток, а при +260С − всего 10 суток. Но дальнейшее увеличение температуры ведет к резкому снижению параметров жизнедеятельности и гибели организма.

В воде диапазон колебаний температур меньше, чем на суше. Поэтому водные организмы меньше приспособлены к изменениям температуры, чем наземные.

Температура часто обуславливает зональность в наземных и водных биогеоценозах.

3) Влажность окружающей среды − важный экологический фактор. Большинство живых организмов на 70−80% состоят из воды − вещества, необходимого для существования протоплазмы. Влажность местности определяется влажностью атмосферного воздуха, количеством осадков, площадью водных запасов.

Влажность воздуха зависит от температуры: чем она выше, тем обычно больше водяных содержится в воздухе. Наиболее богаты влагой нижние слои атмосферы. Осадки представляют собой результат конденсации водяных паров. В зоне умеренного климата распределение осадков по времени года более-менее равномерное, в тропиках и субтропиках − неравномерное. Доступный запас поверхностных вод зависит от подземных источников и количества осадков.

Взаимодействие температуры и влажности формирует два климата: морской и континентальный.

4) Давление − еще один климатический фактор, важный для всех живых организмов. На Земле есть области с постоянно высоким или низким давлением. Перепады давления связаны с неодинаковым нагревом земной поверхности.

5) Ветер − направленное движение воздушных масс, являющееся следствием перепада давлений. Ветровой поток направлен из зоны с большим давлением в зону с меньшим давлением. Он влияет на температурный режим, влажность и перемещение примесей в воздухе.

6) Лунные ритмы обуславливают приливы и отливы, к которым приспособлены морские животные. Они используют приливы и отливы для многих жизненных процессов: перемещения, размножения, и т.д.

II) Эдафогенные факторы определяют различные характеристики почвы. Почва играет важную роль в наземных экосистемах − роль накопителя и резерва ресурсов. На состав и свойства почв сильно влияют климат, растительность и микроорганизмы. Степные почвы более плодородны, чем лесные, так как травы недолговечны и ежегодно в почву поступает большое количество органического вещества, которое быстро разлагается. Экосистемы, не имеющие почв, обычно очень неустойчивы. Выделяют следующие основные характеристики почв: механический состав, влагоемкость, плотность и воздухопроницаемость.

Механический состав почв определяется содержанием в ней частиц различной величины. Различают четыре типа почв, в зависимости от их механического состава: песок, супесь, суглинок, глина. Механический состав прямо воздействует на растения, на подземных организмов, а через них − на другие организмы. От механического состава зависят влагоемкость (способность удерживать влагу), их плотность и воздухопроницаемость почв.

III) Орографические факторы. К ним относятся высота местности над уровнем моря, ее рельеф и расположение относительно сторон света. Орографические факторы во многом определяют климат данной местности, а также другие биотические и абиотические факторы.

IV) Химические факторы. К ним относится химический состав атмосферы (газовый состав воздуха), литосферы, гидросферы. Для живых организмов большое значение имеет содержание в окружающей среде макро- и микроэлементов.

Макроэлементы − элементы, требующиеся организму в сравнительно больших количествах. Для большинства живых организмов это фосфор, азот, калий, кальций, сера, магний.

Микроэлементы − элементы, требующиеся организму в крайне малых количествах, но входящие в состав жизненно важных ферментов. Микроэлементы необходимы для нормальной жизнедеятельности организма. Наиболее распространенные микроэлементы − металлы, кремний, бор, хлор.

Между макроэлементами и микроэлементами нет четкой границы: то, что для одних организмов − микроэлемент, для другого − макроэлемент.

Дата публикования: 2014-11-29; Прочитано: 945 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.001 с)…

Абиотические факторы

Абиотические факторы — факторы неживой природы, физические и химические по своему характеру. К их числу относятся: свет, температура, влажность, давление, соленость (особенно в водной среде), минеральный состав (в почве, в грунте водоемов), движения воздушных масс (ветер), движения водных масс (течения) и т. д. Сочетание различных абиотических факторов определяет распространение видов организмов по разным областям земного шара. Всем известно, что тот или иной биологический вид встречается не повсеместно, а в районах, где имеются необходимые для его существования условия. Именно этим, в частности, объясняется географическая приуроченность различных видов на поверхности нашей планеты.

Следует отметить, что существует немало видов-космополитов, т. е. обитающих повсюду. Например, двустворчатый моллюск мидия живет в морях и океанах обоих полушарий от полярных областей до экватора. Много видов-космополитов встречается среди паразитов. Например, такие паразиты человека, как дизентерийная амеба, детская острица, аскарида, вши, распространены повсеместно.

Как уже отмечалось выше, существование определенного вида зависит от сочетания множества различных абиотических факторов. Причем для каждого вида значение отдельных факторов, а также их комбинации весьма специфично.

Важнейшим для всех живых организмов является свет. Во-первых, потому, что это практически единственный источник энергии для всего живого. Автотрофные (фотосинтезирующие) организмы — цианобактерии, растения, преобразуя энергию солнечного света в энергию химических связей (в процессе синтеза органических веществ из минеральных), обеспечивают свое существование. Но кроме того, органические вещества, ими созданные, служат (в виде пищи) источником энергии для всех гетеротрофов. Во-вторых, свет играет важную роль как фактор, регулирующий образ жизни, поведение, физиологические процессы, происходящие в организмах. Вспомним такой хорошо известный пример, как осеннее сбрасывание листвы у деревьев. Постепенное сокращение светового дня запускает сложный процесс физиологической перестройки растений в преддверии долгого зимнего периода.

Изменения светового дня в течение года имеют огромное значение и для животных умеренного пояса. Сезонностью обусловлены размножение многих их видов, смена оперения и мехового покрова, рогов у копытных, метаморфоз у насекомых, миграции рыб, птиц.

Не менее важным абиотическим фактором, чем свет, является температура. Большинство живых существ может жить лишь в диапазоне от –50 до +50 °С. И главным образом в местах обитания организмов на Земле отмечаются температуры, не выходящие за эти пределы. Однако есть виды, которые приспособились к существованию при очень высоких или низких значениях температуры. Так, некоторые бактерии, круглые черви могут обитать в горячих источниках с температурой до +85 °С. В условиях Арктики и Антарктиды встречаются разные виды теплокровных животных — белые медведи, пингвины.

Температура как абиотический фактор способна существенно влиять на темпы развития, физиологическую активность живых организмов, поскольку подвержена суточным и сезонным колебаниям.

Другие абиотические факторы не менее важны, но в разной степени для разных групп живых организмов. Так, для всех наземных видов существенную роль играет влажность, а для водных — соленость. На фауну и флору островов в океанах и морях значительное влияние оказывает ветер. Для обитателей почвы важна ее структура, т. е. размер частиц грунта.

Биотические и антропогенные факторы

Биотические факторы (факторы живой природы) представляют собой разнообразные формы взаимодействий организмов как одного, так и разных видов.

Взаимоотношения организмов одного вида чаще имеют характер конкуренции, причем достаточно острой. Это обусловлено их одинаковыми потребностями — в пище, территориально пространстве, в свете (для растений), в местах гнездования (для птиц) и т. д.

Нередко во взаимоотношениях особей одного вида встречается и кооперация. Стайный, стадный образ жизни многих животных (копытных, котиков, обезьян) позволяет им успешно защищаться от хищников, обеспечить выживание детенышей. Любопытный пример представляют волки. У них в течение года наблюдается смена конкурентных отношений на кооперативные. В весенне-летний период волки живут парами (самец и самка), выращивают потомство. При этом каждая пара занимает определенную охотничью территорию, обеспечивающую их пропитание. Между парами идет жесткая территориальная конкуренция. В зимний же период волки собираются в стаи и совместно охотятся, причем в волчьей стае складывается довольно сложная «социальная» структура. Переход от конкуренции к кооперации обусловлен здесь тем, что в летний период добычи (мелких животных) много, а зимой доступны лишь крупные животные (лоси, олени, кабаны). С ними волку в одиночку не справиться, вот и образуется стая для успешной совместной охоты.

Взаимоотношения организмов разных видов весьма разнообразны.

Абиотические факторы

У тех, которые имеют сходные потребности (в пище, местах гнездования), наблюдается конкуренция. Например, между серой и черной крысами, рыжим тараканом и черным. Не очень часто, но между разными видами складывается кооперация, как на птичьем базаре. Многочисленные птицы мелких видов первыми замечают опасность, приближение хищника. Они поднимают тревогу, а крупные, сильные виды (например, серебристые чайки) активно нападают на хищника (песца) и прогоняют его, защищая и свои гнезда, и гнезда мелких птах.

Широко распространено во взаимоотношениях видов хищничество. При этом жертву хищник убивает и целиком съедает. К такому способу близко примыкает и растительноядность: здесь также особи одного вида поедают представителей другого (иногда, правда, не целиком съедая растение, а лишь частично).

Очень часто во взаимоотношениях разных видов встречаются симбиотические связи. Под симбиозом понимают совместное существование двух видов организмов. Один вид (симбионт) существует благодаря «эксплуатации» другого (хозяина). Различают три основные формы симбиоза: комменсализм, мутуализм и паразитизм.

При комменсализме симбионт извлекает пользу из сожительства, а хозяину не причиняется вреда, но он и не получает никакой пользы. Например, рыба-лоцман (комменсал), живя возле крупной акулы (хозяин), имеет надежного защитника, да и «со стола» хозяина ей перепадает пища. Акула же попросту не замечает своего «нахлебника». Широко наблюдается комменсализм у животных, ведущих прикрепленный образ жизни, — губок, кишечнополостных (рис. 1).

Рис. 1. Актиния на раковине, занятой раком-отшельником

Личинки этих животных оседают на панцирь крабов, раковину моллюсков, а развившиеся взрослые организмы используют хозяина как «транспортное средство».

Мутуалистические взаимоотношения характеризуются обоюдной выгодой как для мутуалиста, так и для хозяина. Широко известные примеры тому — кишечные бактерии у человека («поставляющие» своему хозяину необходимые витамины); клубеньковые бактерии — фиксаторы азота, -живущие в корнях растений, и т. д.

Паразитизм характеризуется антагонистическими отношениями. Паразит, питаясь за счет хозяина (его тканей, крови, питательных веществ), причиняет ему вред, а хозяин стремится уничтожить или удалить паразита либо подавить его активность и жизнеспособность. Паразит, в свою очередь, противодействует защитным реакциям хозяина.

Наконец, два вида, существующие на одной территории («соседи»), могут никак не взаимодействовать друг с другом. В этом случае говорят о нейтрализме, отсутствии каких-либо взаимоотношений видов.

Антропогенные факторы — факторы (воздействующие на живые организмы и экологические системы), возникающие в результате деятельности человека.

Краснодембский Е. Г."Общая биология: Пособие для старшеклассников и поступающих в вузы"

Влияние абиотических факторов на живые организмы

Как интенсивность воздействия экологических факторов влияет на живые организмы?

  • Приведите примеры стено- и эврибионтных организмов.

  • Сформулируйте законы Ю. Либиха и В. Шелфорда и дайте им экологическое объяснение.

  • *Несмотря на большое разнообразие экологических факторов, в характере их воздействия на организмы и в ответных реакциях живых существ можно выявить ряд общих закономерностей.

    Положительное или отрицательное влияние экологического фактора на живые организмы зависит прежде всего от силы его проявления. Как недостаточное, так и избыточное действие фактора отрицательно сказывается на жизнедеятельности особей.

    Интенсивность экологического фактора, наиболее благоприятная для жизнедеятельности организма, называется оптимумом. Хорошо известны оптимальные температуры цветения, плодоношения, прорастания, икрометания, размножения многих видов.

    Свойство видов адаптироваться к тому или иному диапазону факторов среды называется экологической пластичностью (или экологической валентностью).

    Представители разных видов сильно отличаются друг от друга как по положению оптимума, так и по экологической пластичности. Так, например, песцы в тундре могут переносить колебания температуры воздуха в диапазоне около 80°С (от +30° до -55°С), тогда как тепловодные рачки Copilia mirabilis выдерживают изменение температуры воды в интервале не более 6°С (от +23° до +29°С). Одна и та же сила проявления фактора может быть оптимальной для одного вида, вредной для другого и выходить за пределы выносливости для третьего.

    Зависимость результата действия экологического фактора от его интенсивности

    **Экологически непластичные, т. е. маловыносливые, виды называются стенобионтными (от греч. stenos — узкий), более выносливые — эврибионтными (от греч. eurys — широкий).

    Стенобионтность и эврибионтность характеризуют различные типы приспособления организмов к выживанию. Так, по отношению к температуре различают эври- и стенотермные организмы; к концентрации солей — эври- и стеногалинные; к свету — эври- и стенофотные; к видам пищи — эври- и стенофагные.

    Эврибионтность обычно способствует широкому распространению видов. Как известно, многие простейшие, грибы (типич-
    ные эврибионты) являются космополитами и распространены повсеместно. Стенобионтность же обычно ограничивает ареалы. Однако нередко благодаря жестким требованиям к среде обитания стенобионтам принадлежат обширные территории. Так, рыбоядная птица скопа, являясь типичным стенофагом, по отношению к другим факторам выступает как эврибионт. Она обладает способностью в поисках пищи передвигаться на большие расстояния и занимает значительный ареал.

    Среди рыб, например, форель является стенотермным видом, а окунь — эвритермным. Форель не способна переносить большие колебания температуры, в то время как окунь их легко переносят.

    Юстус Либих — немецкий химик и агрохимик. Разработал теорию минерального питания растений, автор закона минимума и др.

    В 1840 г. Ю. Либих (1803-1873) предположил, что выносливость организмов обусловлена самым слабым звеном в цепи его экологических потребностей. Ученый установил, что урожай зерна часто лимитируется не теми питательными веществами, которые требуются в больших количествах (СО2, Н2О и др.), поскольку эти вещества, как правило, присутствуют в изобилии, а теми, которые необходимы в малых количествах и которых в почве недостаточно (например, бор).

    Ю. Либих показал, что для обеспечения нормального роста растений необходимо определенное число и количество химических элементов, причем одни из них не могут быть заменены другими.

    Рост растений ограничивается недостатком хотя бы одного элемента, количество которого ниже необходимого минимума.

    Данную закономерность он назвал законом минимума.

    Модель, иллюстрирующая закон минимума

    Рассмотрим пример.

    В Белом море ограничивающим фактором для моллюсков является температура: от нее зависит их численность. Но может произойти смена ограничивающего фактора. Так, в 1966 г. ветер нагнал с Карского моря лед, который растаял в Белом море. В результате соленость воды в Белом море упала и стала новым ограничивающим фактором.

    Достаточно общая формулировка закона минимума вызвала много споров и дискуссий среди ученых. Уже в середине XIX в. было известно, что лимитирующим фактором может быть и избыточная доза воздействия, и что разные возрастные (иногда и половые) группы организмов неодинаково реагируют на одни и те же условия.

    Таким образом, лимитирующим может быть не только недостаток (минимум), но и избыток (максимум) экологического фактора. Представление о лимитирующем влиянии максимума наряду с минимумом развил В.

    Абиотические факторы среды

    Шелфорд в 1913 г.

    Закон толерантности Шелфорда:

    Лимитирующим фактором существования вида может быть как минимум, так и максимум экологического фактора, диапазон между которыми определяет величину толерантности (от лат. tolerantia — терпение), выносливости организма к данному фактору.

    Лимитирующие факторы обычно обусловливают границы распространения видов (популяций), их ареалы и другие характеристики. Крайне важно своевременно выявлять факторы минимального и избыточного значения, исключать возможности их проявления (например, для растений — сбалансированным внесением удобрений).

    Экологическая пластичность видов (по Ю. Одуму)

    Виды, длительное время развивавшиеся в относительно стабильных условиях, утрачивают экологическую пластичность и вырабатывают черты стенобионтности, в то время как виды, существовавшие при значительных колебаниях факторов среды, приобретают повышенную экологическую пластичность и становятся эврибионтными.

    Благодаря многочисленным исследованиям сегодня известны пределы существования многих растений и животных.

    Добавить комментарий

    Ваш e-mail не будет опубликован. Обязательные поля помечены *