On

Обобщенный метод наименьших квадратов подразумевает

Posted by admin


Обобщенный метод наименьших квадратов (ОМНК)

При нарушении гомоскедастичности и наличии автокорреляции ошибок рекомендуется традиционный метод наименьших квадратов (известный в английской терминологии как метод OLS – Ordinary Least Squares) заменять обобщенным методом, т.е. методом GLS (Generalized Least Squares).

Обобщенный метод наименьших квадратов применяется к преобразованным данным и позволяет получать оценки, которые обладают не только свойством несмещенности, но и имеют меньшие выборочные дисперсии. Рассмотрим использование ОМНК для корректировки гетероскедастичности.

Будем предполагать, что среднее значение остаточных величин равно нулю. А вот дисперсия их не остается неизменной для разных значений фактора, а пропорциональна величине , т.е.

,

где – дисперсия ошибки при конкретном i-м значении фактора; – постоянная дисперсия ошибки при соблюдении предпосылки о гомоскедастичности остатков; – коэффициент пропорциональности, меняющийся с изменением величины фактора, что и обусловливает неоднородность дисперсии.

При этом предполагается, что неизвестна, а в отношении величин выдвигаются определенные гипотезы, характеризующие структуру гетероскедастичности.

В общем виде для уравнения при модель примет вид: . В ней остаточные величины гетероскедастичны. Предполагая в них отсутствие автокорреляции, можно перейти к уравнению с гомоскедастичными остатками, поделив все переменные, зафиксированные в ходе i-го наблюдения, на . Тогда дисперсия остатков будет величиной постоянной, т. е. .

Иными словами, от регрессии y по x мы перейдем к регрессии на новых переменных: и . Уравнение регрессии примет вид:

,

а исходные данные для данного уравнения будут иметь вид:

, .

По отношению к обычной регрессии уравнение с новыми, преобразованными переменными представляет собой взвешенную регрессию, в которой переменные y и x взяты с весами .

Оценка параметров нового уравнения с преобразованными переменными приводит к взвешенному методу наименьших квадратов, для которого необходимо минимизировать сумму квадратов отклонений вида

.

Соответственно получим следующую систему нормальных уравнений:

Если преобразованные переменные x и y взять в отклонениях от средних уровней, то коэффициент регрессии b можно определить как

.

При обычном применении метода наименьших квадратов к уравнению линейной регрессии для переменных в отклонениях от средних уровней коэффициент регрессии b определяется по формуле:

.

Как видим, при использовании обобщенного МНК с целью корректировки гетероскедастичности коэффициент регрессии b представляет собой взвешенную величину по отношению к обычному МНК с весом .

Аналогичный подход возможен не только для уравнения парной, но и для множественной регрессии. Предположим, что рассматривается модель вида

,

для которой дисперсия остаточных величин оказалась пропорциональна . представляет собой коэффициент пропорциональности, принимающий различные значения для соответствующих i значений факторов и . Ввиду того, что

,

рассматриваемая модель примет вид

,

где ошибки гетероскедастичны.

Для того чтобы получить уравнение, где остатки гомоскедастичны, перейдем к новым преобразованным переменным, разделив все члены исходного уравнения на коэффициент пропорциональности K. Уравнение с преобразованными переменными составит

.

Это уравнение не содержит свободного члена. Вместе с тем, найдя переменные в новом преобразованном виде и применяя обычный МНК к ним, получим иную спецификацию модели:

.

Параметры такой модели зависят от концепции, принятой для коэффициента пропорциональности . В эконометрических исследованиях довольно часто выдвигается гипотеза, что остатки пропорциональны значениям фактора. Так, если в уравнении

предположить, что , т.е. и , то обобщенный МНК предполагает оценку параметров следующего трансформированного уравнения:

.

Применение в этом случае обобщенного МНК приводит к тому, что наблюдения с меньшими значениями преобразованных переменных имеют при определении параметров регрессии относительно больший вес, чем с первоначальными переменными. Вместе с тем, следует иметь в виду, что новые преобразованные переменные получают новое экономическое содержание и их регрессия имеет иной смысл, чем регрессия по исходным данным.

Пример. Пусть y – издержки производства, – объем продукции, – основные производственные фонды, – численность работников, тогда уравнение

является моделью издержек производства с объемными факторами. Предполагая, что пропорциональна квадрату численности работников , мы получим в качестве результирующего показателя затраты на одного работника , а в качестве факторов следующие показатели: производительность труда и фондовооруженность труда . Соответственно трансформированная модель примет вид

,

где параметры , , численно не совпадают с аналогичными параметрами предыдущей модели. Кроме этого, коэффициенты регрессии меняют экономическое содержание: из показателей силы связи, характеризующих среднее абсолютное изменение издержек производства с изменением абсолютной величины соответствующего фактора на единицу, они фиксируют при обобщенном МНК среднее изменение затрат на работника; с изменением производительности труда на единицу при неизменном уровне фондовооруженности труда; и с изменением фондовооруженности труда на единицу при неизменном уровне производительности труда.

Если предположить, что в модели с первоначальными переменными дисперсия остатков пропорциональна квадрату объема продукции, , можно перейти к уравнению регрессии вида

.

В нем новые переменные: – затраты на единицу (или на 1 руб. продукции), – фондоемкость продукции, – трудоемкость продукции.

Гипотеза о пропорциональности остатков величине фактора может иметь реальное обоснование: при обработке недостаточно однородной совокупности, включающей как крупные, так и мелкие предприятия, большим объемным значениям фактора может соответствовать большая дисперсия результативного признака и большая дисперсия остаточных величин.

При наличии одной объясняющей переменной гипотеза трансформирует линейное уравнение

в уравнение

,

в котором параметры a и b поменялись местами, константа стала коэффициентом наклона линии регрессии, а коэффициент регрессии – свободным членом.

Пример. Рассматривая зависимость сбережений y от дохода x, по первоначальным данным было получено уравнение регрессии

.

Применяя обобщенный МНК к данной модели в предположении, что ошибки пропорциональны доходу, было получено уравнение для преобразованных данных:

.

Коэффициент регрессии первого уравнения сравнивают со свободным членом второго уравнения, т.е. 0,1178 и 0,1026 – оценки параметра b зависимости сбережений от дохода.

Переход к относительным величинам существенно снижает вариацию фактора и соответственно уменьшает дисперсию ошибки. Он представляет собой наиболее простой случай учета гетероскедастичности в регрессионных моделях с помощью обобщенного МНК. Применение обобщенного МНК позволяет получить оценки параметров модели, обладающие меньшей дисперсией.

Дата добавления: 2016-10-18; просмотров: 1856;

Похожие статьи:

Обобщенный метод наименьших квадратов (ОМНК)

При нарушении гомоскедастичности и наличии автокорреляции ошибок рекомендуется традиционный метод наименьших квадратов (известный в английской терминологии как метод OLS – Ordinary Least Squares) заменять обобщенным методом, т.е. методом GLS (Generalized Least Squares).

Обобщенный метод наименьших квадратов применяется к преобразованным данным и позволяет получать оценки, которые обладают не только свойством несмещенности, но и имеют меньшие выборочные дисперсии. Рассмотрим использование ОМНК для корректировки гетероскедастичности.

Будем предполагать, что среднее значение остаточных величин равно нулю. А вот дисперсия их не остается неизменной для разных значений фактора, а пропорциональна величине , т.е.

,

где – дисперсия ошибки при конкретном i-м значении фактора; – постоянная дисперсия ошибки при соблюдении предпосылки о гомоскедастичности остатков; – коэффициент пропорциональности, меняющийся с изменением величины фактора, что и обусловливает неоднородность дисперсии.

При этом предполагается, что неизвестна, а в отношении величин выдвигаются определенные гипотезы, характеризующие структуру гетероскедастичности.

В общем виде для уравнения при модель примет вид: . В ней остаточные величины гетероскедастичны. Предполагая в них отсутствие автокорреляции, можно перейти к уравнению с гомоскедастичными остатками, поделив все переменные, зафиксированные в ходе i-го наблюдения, на . Тогда дисперсия остатков будет величиной постоянной, т. е. .

Иными словами, от регрессии y по x мы перейдем к регрессии на новых переменных: и . Уравнение регрессии примет вид:

,

а исходные данные для данного уравнения будут иметь вид:

, .

По отношению к обычной регрессии уравнение с новыми, преобразованными переменными представляет собой взвешенную регрессию, в которой переменные y и x взяты с весами .

Оценка параметров нового уравнения с преобразованными переменными приводит к взвешенному методу наименьших квадратов, для которого необходимо минимизировать сумму квадратов отклонений вида

.

Соответственно получим следующую систему нормальных уравнений:

Если преобразованные переменные x и y взять в отклонениях от средних уровней, то коэффициент регрессии b можно определить как

.

При обычном применении метода наименьших квадратов к уравнению линейной регрессии для переменных в отклонениях от средних уровней коэффициент регрессии b определяется по формуле:

.

Как видим, при использовании обобщенного МНК с целью корректировки гетероскедастичности коэффициент регрессии b представляет собой взвешенную величину по отношению к обычному МНК с весом .

Аналогичный подход возможен не только для уравнения парной, но и для множественной регрессии. Предположим, что рассматривается модель вида

,

для которой дисперсия остаточных величин оказалась пропорциональна . представляет собой коэффициент пропорциональности, принимающий различные значения для соответствующих i значений факторов и . Ввиду того, что

,

рассматриваемая модель примет вид

,

где ошибки гетероскедастичны.

Для того чтобы получить уравнение, где остатки гомоскедастичны, перейдем к новым преобразованным переменным, разделив все члены исходного уравнения на коэффициент пропорциональности K. Уравнение с преобразованными переменными составит

.

Это уравнение не содержит свободного члена. Вместе с тем, найдя переменные в новом преобразованном виде и применяя обычный МНК к ним, получим иную спецификацию модели:

.

Параметры такой модели зависят от концепции, принятой для коэффициента пропорциональности . В эконометрических исследованиях довольно часто выдвигается гипотеза, что остатки пропорциональны значениям фактора. Так, если в уравнении

предположить, что , т.е. и , то обобщенный МНК предполагает оценку параметров следующего трансформированного уравнения:

.

Применение в этом случае обобщенного МНК приводит к тому, что наблюдения с меньшими значениями преобразованных переменных имеют при определении параметров регрессии относительно больший вес, чем с первоначальными переменными. Вместе с тем, следует иметь в виду, что новые преобразованные переменные получают новое экономическое содержание и их регрессия имеет иной смысл, чем регрессия по исходным данным.

Пример. Пусть y – издержки производства, – объем продукции, – основные производственные фонды, – численность работников, тогда уравнение

является моделью издержек производства с объемными факторами. Предполагая, что пропорциональна квадрату численности работников , мы получим в качестве результирующего показателя затраты на одного работника , а в качестве факторов следующие показатели: производительность труда и фондовооруженность труда .

Обобщённый метод наименьших квадратов

Соответственно трансформированная модель примет вид

,

где параметры , , численно не совпадают с аналогичными параметрами предыдущей модели. Кроме этого, коэффициенты регрессии меняют экономическое содержание: из показателей силы связи, характеризующих среднее абсолютное изменение издержек производства с изменением абсолютной величины соответствующего фактора на единицу, они фиксируют при обобщенном МНК среднее изменение затрат на работника; с изменением производительности труда на единицу при неизменном уровне фондовооруженности труда; и с изменением фондовооруженности труда на единицу при неизменном уровне производительности труда.

Если предположить, что в модели с первоначальными переменными дисперсия остатков пропорциональна квадрату объема продукции, , можно перейти к уравнению регрессии вида

.

В нем новые переменные: – затраты на единицу (или на 1 руб. продукции), – фондоемкость продукции, – трудоемкость продукции.

Гипотеза о пропорциональности остатков величине фактора может иметь реальное обоснование: при обработке недостаточно однородной совокупности, включающей как крупные, так и мелкие предприятия, большим объемным значениям фактора может соответствовать большая дисперсия результативного признака и большая дисперсия остаточных величин.

При наличии одной объясняющей переменной гипотеза трансформирует линейное уравнение

в уравнение

,

в котором параметры a и b поменялись местами, константа стала коэффициентом наклона линии регрессии, а коэффициент регрессии – свободным членом.

Пример. Рассматривая зависимость сбережений y от дохода x, по первоначальным данным было получено уравнение регрессии

.

Применяя обобщенный МНК к данной модели в предположении, что ошибки пропорциональны доходу, было получено уравнение для преобразованных данных:

.

Коэффициент регрессии первого уравнения сравнивают со свободным членом второго уравнения, т.е. 0,1178 и 0,1026 – оценки параметра b зависимости сбережений от дохода.

Переход к относительным величинам существенно снижает вариацию фактора и соответственно уменьшает дисперсию ошибки. Он представляет собой наиболее простой случай учета гетероскедастичности в регрессионных моделях с помощью обобщенного МНК. Применение обобщенного МНК позволяет получить оценки параметров модели, обладающие меньшей дисперсией.

Дата добавления: 2016-10-18; просмотров: 1859;

Похожие статьи:

Обобщенный метод наименьших квадратов (омнк)

Обобщенный метод наименьших квадратов (ОМНК)

При нарушении гомоскедастичности и наличии автокорреляции ошибок рекомендуется традиционный метод наименьших квадратов (известный в английской терминологии как метод OLS – Ordinary Least Squares) заменять обобщенным методом, т.е. методом GLS (Generalized Least Squares).

Обобщенный метод наименьших квадратов применяется к преобразованным данным и позволяет получать оценки, которые обладают не только свойством несмещенности, но и имеют меньшие выборочные дисперсии. Рассмотрим использование ОМНК для корректировки гетероскедастичности.

Будем предполагать, что среднее значение остаточных величин равно нулю. А вот дисперсия их не остается неизменной для разных значений фактора, а пропорциональна величине , т.е.

,

где – дисперсия ошибки при конкретном i-м значении фактора; – постоянная дисперсия ошибки при соблюдении предпосылки о гомоскедастичности остатков; – коэффициент пропорциональности, меняющийся с изменением величины фактора, что и обусловливает неоднородность дисперсии.

При этом предполагается, что неизвестна, а в отношении величин выдвигаются определенные гипотезы, характеризующие структуру гетероскедастичности.

В общем виде для уравнения при модель примет вид: . В ней остаточные величины гетероскедастичны. Предполагая в них отсутствие автокорреляции, можно перейти к уравнению с гомоскедастичными остатками, поделив все переменные, зафиксированные в ходе i-го наблюдения, на . Тогда дисперсия остатков будет величиной постоянной, т. е. .

Иными словами, от регрессии y по x мы перейдем к регрессии на новых переменных: и . Уравнение регрессии примет вид:

,

а исходные данные для данного уравнения будут иметь вид:

, .

По отношению к обычной регрессии уравнение с новыми, преобразованными переменными представляет собой взвешенную регрессию, в которой переменные y и x взяты с весами .

Оценка параметров нового уравнения с преобразованными переменными приводит к взвешенному методу наименьших квадратов, для которого необходимо минимизировать сумму квадратов отклонений вида

.

Соответственно получим следующую систему нормальных уравнений:

Если преобразованные переменные x и y взять в отклонениях от средних уровней, то коэффициент регрессии b можно определить как

.

При обычном применении метода наименьших квадратов к уравнению линейной регрессии для переменных в отклонениях от средних уровней коэффициент регрессии b определяется по формуле:

.

Как видим, при использовании обобщенного МНК с целью корректировки гетероскедастичности коэффициент регрессии b представляет собой взвешенную величину по отношению к обычному МНК с весом .

Аналогичный подход возможен не только для уравнения парной, но и для множественной регрессии. Предположим, что рассматривается модель вида

,

для которой дисперсия остаточных величин оказалась пропорциональна . представляет собой коэффициент пропорциональности, принимающий различные значения для соответствующих i значений факторов и . Ввиду того, что

,

рассматриваемая модель примет вид

,

где ошибки гетероскедастичны.

Для того чтобы получить уравнение, где остатки гомоскедастичны, перейдем к новым преобразованным переменным, разделив все члены исходного уравнения на коэффициент пропорциональности K. Уравнение с преобразованными переменными составит

.

Это уравнение не содержит свободного члена. Вместе с тем, найдя переменные в новом преобразованном виде и применяя обычный МНК к ним, получим иную спецификацию модели:

.

Параметры такой модели зависят от концепции, принятой для коэффициента пропорциональности . В эконометрических исследованиях довольно часто выдвигается гипотеза, что остатки пропорциональны значениям фактора. Так, если в уравнении

предположить, что , т.е. и , то обобщенный МНК предполагает оценку параметров следующего трансформированного уравнения:

.

Применение в этом случае обобщенного МНК приводит к тому, что наблюдения с меньшими значениями преобразованных переменных имеют при определении параметров регрессии относительно больший вес, чем с первоначальными переменными. Вместе с тем, следует иметь в виду, что новые преобразованные переменные получают новое экономическое содержание и их регрессия имеет иной смысл, чем регрессия по исходным данным.

Пример. Пусть y – издержки производства, – объем продукции, – основные производственные фонды, – численность работников, тогда уравнение

является моделью издержек производства с объемными факторами. Предполагая, что пропорциональна квадрату численности работников , мы получим в качестве результирующего показателя затраты на одного работника , а в качестве факторов следующие показатели: производительность труда и фондовооруженность труда . Соответственно трансформированная модель примет вид

,

где параметры , , численно не совпадают с аналогичными параметрами предыдущей модели. Кроме этого, коэффициенты регрессии меняют экономическое содержание: из показателей силы связи, характеризующих среднее абсолютное изменение издержек производства с изменением абсолютной величины соответствующего фактора на единицу, они фиксируют при обобщенном МНК среднее изменение затрат на работника; с изменением производительности труда на единицу при неизменном уровне фондовооруженности труда; и с изменением фондовооруженности труда на единицу при неизменном уровне производительности труда.

Если предположить, что в модели с первоначальными переменными дисперсия остатков пропорциональна квадрату объема продукции, , можно перейти к уравнению регрессии вида

.

В нем новые переменные: – затраты на единицу (или на 1 руб. продукции), – фондоемкость продукции, – трудоемкость продукции.

Гипотеза о пропорциональности остатков величине фактора может иметь реальное обоснование: при обработке недостаточно однородной совокупности, включающей как крупные, так и мелкие предприятия, большим объемным значениям фактора может соответствовать большая дисперсия результативного признака и большая дисперсия остаточных величин.

При наличии одной объясняющей переменной гипотеза трансформирует линейное уравнение

в уравнение

,

в котором параметры a и b поменялись местами, константа стала коэффициентом наклона линии регрессии, а коэффициент регрессии – свободным членом.

Пример. Рассматривая зависимость сбережений y от дохода x, по первоначальным данным было получено уравнение регрессии

.

Применяя обобщенный МНК к данной модели в предположении, что ошибки пропорциональны доходу, было получено уравнение для преобразованных данных:

.

Коэффициент регрессии первого уравнения сравнивают со свободным членом второго уравнения, т.е. 0,1178 и 0,1026 – оценки параметра b зависимости сбережений от дохода.

Переход к относительным величинам существенно снижает вариацию фактора и соответственно уменьшает дисперсию ошибки. Он представляет собой наиболее простой случай учета гетероскедастичности в регрессионных моделях с помощью обобщенного МНК. Применение обобщенного МНК позволяет получить оценки параметров модели, обладающие меньшей дисперсией.

Дата добавления: 2016-10-18; просмотров: 1858;

Похожие статьи:

Обобщенный метод наименьших квадратов (ОМНК)

При нарушении гомоскедастичности и наличии автокорреляции ошибок рекомендуется традиционный метод наименьших квадратов (известный в английской терминологии как метод OLS – Ordinary Least Squares) заменять обобщенным методом, т.е. методом GLS (Generalized Least Squares).

Обобщенный метод наименьших квадратов применяется к преобразованным данным и позволяет получать оценки, которые обладают не только свойством несмещенности, но и имеют меньшие выборочные дисперсии. Рассмотрим использование ОМНК для корректировки гетероскедастичности.

Будем предполагать, что среднее значение остаточных величин равно нулю. А вот дисперсия их не остается неизменной для разных значений фактора, а пропорциональна величине , т.е.

,

где – дисперсия ошибки при конкретном i-м значении фактора; – постоянная дисперсия ошибки при соблюдении предпосылки о гомоскедастичности остатков; – коэффициент пропорциональности, меняющийся с изменением величины фактора, что и обусловливает неоднородность дисперсии.

При этом предполагается, что неизвестна, а в отношении величин выдвигаются определенные гипотезы, характеризующие структуру гетероскедастичности.

В общем виде для уравнения при модель примет вид: . В ней остаточные величины гетероскедастичны. Предполагая в них отсутствие автокорреляции, можно перейти к уравнению с гомоскедастичными остатками, поделив все переменные, зафиксированные в ходе i-го наблюдения, на . Тогда дисперсия остатков будет величиной постоянной, т. е. .

Иными словами, от регрессии y по x мы перейдем к регрессии на новых переменных: и . Уравнение регрессии примет вид:

,

а исходные данные для данного уравнения будут иметь вид:

, .

По отношению к обычной регрессии уравнение с новыми, преобразованными переменными представляет собой взвешенную регрессию, в которой переменные y и x взяты с весами .

Оценка параметров нового уравнения с преобразованными переменными приводит к взвешенному методу наименьших квадратов, для которого необходимо минимизировать сумму квадратов отклонений вида

.

Соответственно получим следующую систему нормальных уравнений:

Если преобразованные переменные x и y взять в отклонениях от средних уровней, то коэффициент регрессии b можно определить как

.

При обычном применении метода наименьших квадратов к уравнению линейной регрессии для переменных в отклонениях от средних уровней коэффициент регрессии b определяется по формуле:

.

Как видим, при использовании обобщенного МНК с целью корректировки гетероскедастичности коэффициент регрессии b представляет собой взвешенную величину по отношению к обычному МНК с весом .

Аналогичный подход возможен не только для уравнения парной, но и для множественной регрессии. Предположим, что рассматривается модель вида

,

для которой дисперсия остаточных величин оказалась пропорциональна . представляет собой коэффициент пропорциональности, принимающий различные значения для соответствующих i значений факторов и . Ввиду того, что

,

рассматриваемая модель примет вид

,

где ошибки гетероскедастичны.

Для того чтобы получить уравнение, где остатки гомоскедастичны, перейдем к новым преобразованным переменным, разделив все члены исходного уравнения на коэффициент пропорциональности K. Уравнение с преобразованными переменными составит

.

Это уравнение не содержит свободного члена.

Обобщенный метод наименьших квадратов. (ОМНК).

Вместе с тем, найдя переменные в новом преобразованном виде и применяя обычный МНК к ним, получим иную спецификацию модели:

.

Параметры такой модели зависят от концепции, принятой для коэффициента пропорциональности . В эконометрических исследованиях довольно часто выдвигается гипотеза, что остатки пропорциональны значениям фактора. Так, если в уравнении

предположить, что , т.е. и , то обобщенный МНК предполагает оценку параметров следующего трансформированного уравнения:

.

Применение в этом случае обобщенного МНК приводит к тому, что наблюдения с меньшими значениями преобразованных переменных имеют при определении параметров регрессии относительно больший вес, чем с первоначальными переменными. Вместе с тем, следует иметь в виду, что новые преобразованные переменные получают новое экономическое содержание и их регрессия имеет иной смысл, чем регрессия по исходным данным.

Пример. Пусть y – издержки производства, – объем продукции, – основные производственные фонды, – численность работников, тогда уравнение

является моделью издержек производства с объемными факторами. Предполагая, что пропорциональна квадрату численности работников , мы получим в качестве результирующего показателя затраты на одного работника , а в качестве факторов следующие показатели: производительность труда и фондовооруженность труда . Соответственно трансформированная модель примет вид

,

где параметры , , численно не совпадают с аналогичными параметрами предыдущей модели. Кроме этого, коэффициенты регрессии меняют экономическое содержание: из показателей силы связи, характеризующих среднее абсолютное изменение издержек производства с изменением абсолютной величины соответствующего фактора на единицу, они фиксируют при обобщенном МНК среднее изменение затрат на работника; с изменением производительности труда на единицу при неизменном уровне фондовооруженности труда; и с изменением фондовооруженности труда на единицу при неизменном уровне производительности труда.

Если предположить, что в модели с первоначальными переменными дисперсия остатков пропорциональна квадрату объема продукции, , можно перейти к уравнению регрессии вида

.

В нем новые переменные: – затраты на единицу (или на 1 руб. продукции), – фондоемкость продукции, – трудоемкость продукции.

Гипотеза о пропорциональности остатков величине фактора может иметь реальное обоснование: при обработке недостаточно однородной совокупности, включающей как крупные, так и мелкие предприятия, большим объемным значениям фактора может соответствовать большая дисперсия результативного признака и большая дисперсия остаточных величин.

При наличии одной объясняющей переменной гипотеза трансформирует линейное уравнение

в уравнение

,

в котором параметры a и b поменялись местами, константа стала коэффициентом наклона линии регрессии, а коэффициент регрессии – свободным членом.

Пример. Рассматривая зависимость сбережений y от дохода x, по первоначальным данным было получено уравнение регрессии

.

Применяя обобщенный МНК к данной модели в предположении, что ошибки пропорциональны доходу, было получено уравнение для преобразованных данных:

.

Коэффициент регрессии первого уравнения сравнивают со свободным членом второго уравнения, т.е. 0,1178 и 0,1026 – оценки параметра b зависимости сбережений от дохода.

Переход к относительным величинам существенно снижает вариацию фактора и соответственно уменьшает дисперсию ошибки. Он представляет собой наиболее простой случай учета гетероскедастичности в регрессионных моделях с помощью обобщенного МНК. Применение обобщенного МНК позволяет получить оценки параметров модели, обладающие меньшей дисперсией.

Дата добавления: 2016-10-18; просмотров: 1857;

Похожие статьи:

1) которые отражают нелинейную зависимость между двумя экономическими показателями и не могут быть приведены к линейному виду,

2) нелинейного вида,

3) которые отражают нелинейную зависимость между двумя экономическими показателями, но могут быть приведены к линейному виду,

4) которые отражают линейную зависимость между двумя экономическими показателями.

18.Значение коэффициента детерминации составило 0,9. Следовательно, отношение ________________дисперсии к общей дисперсии равно ______________.

1) факторной…..0,1; 2) остаточной ….0,1; 3) остаточной ….0,9; 4) факторной ….0,9.

19. Предпосылками метода наименьших квадратов (МНК) являются …..

а) присутствие в эконометрической модели более чем двух факторов;

б) отсутствие автокорреляции в остатках;

в) функциональная связь между зависимой и независимой переменными;

г) гомоскедастичность остатков.

20.Укажите существующие классы эконометрических систем:

а) система нормальных уравнений; б) система стандартных уравнений;

в) системы одновременных уравнений; г) система независимых уравнений.

Примеры оценочных средств для промежуточной аттестации

1. Математическое моделирование в эконометрике.

2. Понятие о экзогенных и эндогенных переменных в эконометрике.

3. Измерения в экономике.

4. Подбор линеаризующего преобразования. Тест Бокса-Кокса.

5. Множественная регрессия. Спецификация переменных.

6. Как связаны между собой критерий Стьюдента для оценки значимости параметров bi и частные Fxi- критерии?

7. Мультиколлинеарность факторов во множественной регрессии и методы ее устранения.

8. Что такое частный критерии Фишера и чем он отличается от последовательного?

9. Мультиколлинеарность факторов при множественной регрессии. К каким трудностям приводит мультиколлинеарность факторов, включенных в модель, и как они могут быть преодолены?

10. Каково назначение частных корреляций при построении модели множественной регрессии?

11. Оценка надежности результатов множественной регрессии и корреляции.

12. Оценка надежности результатов множественной регрессии и корреляции.

13. При каких условиях строится уравнение множественной регрессии с фиктивными коэффициентами?

14. Проблема гетероскедастичности, способы ее определение . Известные тесты Гольдфельда – Квандта и Спирмена и их применение..

15. Проблема гетероскедастичности. Тесты Уайтта, Парка и Глейзера.

16. Обобщенный метод наименьших квадратов.

17. Свойства оценок МНК.

18.Дисперсионный анализ и составление таблицы дисперсионного анализа для множественной регрессии.

19. Понятие числа степеней свободы и его определение для факторной и остаточной сумм квадратов.

20. Критерий Фишера-Снедекора.

21. Нелинейная регрессия, ее виды.

22. Корреляция для регрессии, нелинейной по переменным.

23. Нелинейная регрессия относительно включенных переменных, но линейная по параметрам.

24. Регрессия нелинейная по оцениваемым параметрам.

25. МНК для нелинейной регрессии.

26. Отличие применения МНК к моделям нелинейным относительно включаемых переменных и оцениваемых параметров.

27. Корреляция для нелинейной регрессии.

28. Множественная регрессия. Спецификация переменных.

29. Что такое частный критерии Фишера и чем он отличается от последовательного?

30. Оценка надежности результатов множественной регрессии.

31. Оценка надежности результатов множественной корреляции.

32. При каких условиях строится уравнение множественной регрессии с фиктивными коэффициентами?

33. Как связаны между собой структурная и приведенная формы модели?

9 Учебно-методическое обеспечение дисциплины (модуля)

9.1 Основная литература

1. Кремер Н.Ш. Эконометрика [Электронный ресурс]: учебник для студентов вузов/ Кремер Н.Ш., Путко Б.А.— Электрон. текстовые данные.— М.: ЮНИТИ-ДАНА, 2012.— 328 c.— Режим доступа: http://www.iprbookshop.ru/8594. — ЭБС «IPRbooks», по паролю

2. Елисеева, И.И. Эконометрика: учебник для магистров /И.И. Елисеева [и др.]; под ред. И.И. Елисеевой.— М.: Юрайт, 2012 .— 450с. – 1 экз.

9.2 Дополнительная литература

1. Елисеева, И.И. Эконометрика: учебник для вузов /И.И. Елисеева [и др.]; под ред. И.И. Елисеевой.— М.: Проспект, 2013 .— 288с. (1 экз.)

2. Елисеева, И.И. Эконометрика: учебник для вузов /И.И. Елисеева [и др.]; под ред. И.И. Елисеевой.— М.: Проспект, 2009 .— 288с. (1 экз.)

3. Елисеева, И.И. Эконометрика: учебник для вузов / И.И. Елисеева [и др.]; под ред. И.И. Елисеевой .— 2-е изд., перераб. и доп. — М.: Финансы и статистика, 2008 .— 576с. (12 экз.)

4. Елисеева И.И. Практикум по эконометрике: учебное пособие для экономических вузов./И.И. Елисеева [и др.]; под ред. И.И. Елисеевой .— 2-е изд., перераб. и доп. — М. : Финансы и статистика, 2008 .— 344с.+1 опт. диск (CD-ROM). (8 экз.)

5. Эконометрика [Электронный ресурс]: учебно-мультимедийный компьютерный курс .— Multimedia (110MB) .— М. : Диполь, 2007 .— 1 опт. диск. (CD ROM) .— (Вузовская серия).

9.3 Периодические издания

1. Журнал «Проблемы прогнозирования» c 2011 по 2015 гг.

2. Журнал «Экономика и математические методы» c 2011 по 2015 гг.

3. Прикладная эконометрика [Электронный ресурс]: Научно-практический журнал.— Режим доступа: http// www.elibrari.ru/ projeets/subscripfion/rus titles open.nsp.

9.4 Интернетресурсы

1. Электронный читальный зал "БИБЛИОТЕХ" : учебники авторов ТулГУ по всем дисциплинам. — Режим доступа: https://tsutula.bibliotech.ru/, по паролю.- Загл. с экрана

2. ЭБС IPRBooks универсальная базовая коллекция изданий. — Режим доступа: http://www.iprbookshop.ru/, по паролю.

3. Научная Электронная Библиотека eLibrary — библиотека электронной периодики.- Режим доступа: http://elibrary.ru/ , по паролю.- Загл. с экрана.

4. НЭБ КиберЛенинка научная электронная библиотека открытого доступа, режим доступа http://cyberleninka.ru/ ,свободный.- Загл. с экрана.

5. Единое окно доступа к образовательным ресурсам: портал [Электронный ресурс]. — Режим доступа : http: //window.edu.ru.

ТЕМА 2.5. ОБОБЩЕННЫЙ МЕТОД НАИМЕНЬШИХ КВАДРАТОВ (ОМНК)

— Загл. с экрана.

6. www.gks.ru / Федеральная служба государственной статистики/

7. www.minfin.ru / Министерство финансов РФ

8. www.minpromtorg.gov.ru / Министерство промышленности и торговли РФ/

9. Справочная правовая система Консультант Плюс, размещена в 5-304, 5-309, 5-311.

⇐ Предыдущая1234



Метод наименьших квадратов для оценки параметров трендовой модели

⇐ ПредыдущаяСтр 4 из 4

Для оценки параметра выбранной модели используют различные методы наиболее часто применяют так называемый метод наименьших квадратов (МНК). Согласно этому методу параметры оцениваются из условия, что сумма квадратов отклонений расчетных значений по модели тренда от эмпирических (фактических) данных минимальный. Во многих случаях применение МНК приводит к системе линейно относительно оцениваемых параметров (а0, а1 …) уравнений (они получается путем взятия частных производных приравнивание их к 0).

После того как вычислены параметры (а0, а1 …) определяют расчетные значения по модели тренда и отклонения от эмпирических данных:

Случайная компонента E (t) представляет собой также динамический ряд, который называют рядом остатков.

Анализ трендовых моделей на адекватность и точность.

исследование случайной компоненты позволяет сделать вывод об адекватности модели.

Модель считается адекватной если:

1. Математическое ожидание случайной компоненты равно 0.

2. Остаточная компонента обладает свойством случайности, испытывается гипотеза о случайности остатков с использованием метода «поворотных точек» (метод пиков)

3. Отсутствия автокорреляции в ряду остатков или независимость остатков. Используется критерий Дарбина- Уотсона .

4. Нормальность распределения в ряду остатков. Используется R / S – критерий («размах – стандарт»).

Точность модели оценивается по среднеквадратическому отклонению расчетных значений от эмпирических данных и по средней относительной ошибки аппроксимации

Если Еотн £ 5% , то точность считается хорошей, точность можно считать удовлетворительной (использовать модель для прогнозирования) если Еотн < 15%

Линейный тренд

Система уравнений МНК:

Даже для линейного тренда рекомендуется предварительно центрировать динамический ряд, т.е. перенести начало координат в середину. Тогда St (а также суммы всех нечетных степеней) будет равна 0 и система приобретает вид:

И параметры системы вычисляются по следующим формулам:

Если число уровней четное, то предварительно осуществляют центрирование ряда.

Использование трендовых моделей для прогнозирования.

С использованием трендовой модели определяем точечные прогнозные оценки (ориентиры), используется уравнение тренда

Вычисляем:

t = n + l Yn+l

n – соответствует последнему уровню динамического ряда

L – длина прогноза (max количество шагов, на которое осуществляется прогноз)

l = 1 – прогноз на один шаг

Чтобы прогноз путем экстраполяции тренда был корректным необходимо чтобы длина прогноза не превосходила трети длины предыстории L £ T/3 (по другим оценкам L £ T/4)

Найдем среднеквадратическое отклонение от тренда

Где m – число связей, налагаемых уравнением тренда, при линейном m = 2 (а0, а1)

n – m — число степеней свободы

Среднеквадратичная ошибка прогноза определяется:

Где kl – величина зависящая от 3-х факторов :

— от вида уравнения тренда (линейный, нелинейный тренд)

— от числа уровней ряда n

— от периода упреждения l

Для линейного тренда величина kl определяется:

Предельная ошибка прогноза определяется как t кратное среднеквадратической ошибки прогноза:

Где t — коэффициент доверия, определяемый по таблице t распределения Стьюдента в зависимости от доверительной вероятности (уровня значимости) и от числа степеней свободы.

Индивидуальные индексы.

Индивидуальные индексы.

Относительная величина, получаемая при сравнении уровней называется индивидуальным индексом, если не имеет значение структура изучаемого явления (i).

Расчет индивидуальных индексов прост. Их определяют вычислением отношением двух индексированных величин.

Например, если уровень товарооборота Q в виде суммы выручки от продажи товара в условиях отчетного периода сравнивается с аналогичным показателем базисного периода, то получаем индекс выручки.

iQ=Q1/Q0 (1)

разность между числителем и знаменателем формулы (1) представляют собой абсолютное изменение выручки.

DQ=Q1-Q0 (2)

Оно показывает на сколько денеж.ед. изменилась выручка в отчетном периоде по сравнению с базисным. Аналогично опред. индивидуальные индексы для любого интересующего показателя.

Сумма выручки опред. ценой товара (р) и количеством (физическим объемом или объемом продаж натуральном выражении q).

Q=p*q ip=p1/p0 (3) iq=q1/q0 (4)

Произведение индекса цены и индекса кол-ва даст нам индекс выручки.

iQ=ip*iq (5)

бабушка торговала семечками по 5руб. за кулек, продала 50 кульков (вчера). По 7руб. 20 кульков (сегодня).

ip=7/5=1,4

бабушка увелич. цену в 1,4 раза или на 40%.

iq=20/50=0,4

т.е. кол-во проданных семечек составило 40% от вчерашнего, т.е. уменьшилось на 60%.

iQ=1,4*0,4=0,56

т.е. выручка составила 56% от вчерашней, т.е. уменьшилась на 44%.

iQ=Q1/Q0=7*20/5*40=0,56

DQ=Q1-Q0=140-250=-110

т.е.

Обобщенный метод наименьших квадратов. (ОМНК).

выручка уменьшилась на 110руб или на 44%, что объясняет изменением кол-во проданных семечек уменьшением на 60% и изменением цены в 1,4 раза, повышением цены на 40%.

Поставим в формулу (1) формулу (5)

Q1/Q0= ip*iq Q1= ip*iq*Q0 (6)

Формула (6) представляет собой двухфакторную мультипликативную индексную модель итогового показателя.

В данном случае выручки, посредствам которой находят изменения этого показателя под влиянием каждого фактора (цены и кол-ва) в отдельности (факторный анализ).

DQ=DQp+DQq (7)

DQp- изменение выручки под влиянием изменения цены товара.

DQq- изменение выручки под влиянием изменения кол-ва проданного товара.

Для проведения факторного анализа по формуле (7) необходимо определить очередность влияния факторов на результативный показатель, который может быть следующим:

1. Сначала менялась цена, а затем кол-во, цена первый фактор, кол-во второй.

2. Сначала менялось кол-во, а затем цена, кол-во первый фактор, цена второй.

В соответствии с этой очередностью влияния факторов запись факторов мультипликативной модели:

1. Формула (6)-эта запись когда цена первый фактор, а кол-во второй.

2. В случае когда кол-во явл. первым фактором, а цена вторым Q1=iq*ip*Q0 (8)

Чтобы найти изменение результативного показателя на основе мультипликативной модели за счет первого фактора необходимо исключить влияние остальных факторов.

При использовании формулы (6) (цена первый фактор), получаем

DQp=Q0(ip-1) (9)

Когда кол-во первый фактор используем формулу (8), то получаем

DQq=Q0(iq-1) (10)

В нашем примере сначала изменилась цена, а затем кол-во, т.е. цена первый фактор, кол-во второй, т.е. используем формулу (6), а изменение за счет первого фактора находим по формуле (9).

DQp=250(1,4-1)=100

Т.е. повышение цены с 5 до 7 рублей должно было увеличить сегоднейшую выручку на 100 руб.

По факту выручка снизилась на 110 руб. это отрицательное влияние второго фактора изменения кол-ва.

Чтобы найти изменение результативного показателя на основе мультипликативной модели за счет второго фактора необходимо из общего изменения результативного показателя вычесть его уменьшением под влиянием второго фактора.

Если кол-во второй фактор DQq=DQ-DQp=(Q1-Q0)-Q0(ip-1)=Q1-Q0-Q0ip+Q0=

=Q1- Q0ip= iq*ip*Q0- Q0ip= ipQ0(ip-1)

DQq=ip(iq-1) Q0 (11)

Если вторым фактором явл. цена, то уменьшение за счет этого фактора определяется DQp=DQ-DQq=(Q1-Q0)-Q0(iq-1)=Q1-Q0-Q0iq+Q0=

= iq*ip*Q0- Q0iq= iqQ0(ip-1)

DQp=iq(ip-1) Q0 (12)

В случае, когда кол-во первый фактор, а цена второй, для определения общего изменения формулы (7) используется (10) и (12) формулы.

В нашем примере про бабушку изменения под влиянием второго фактора определим по формуле (11)

DQq=1,4(0,4-1)*250=-210

Изменение кол-ва с 50 до 20 кульков уменьшило выручку на 210 рублей.

DQ=100+(-210)=-110 (что совпадает с формулой (2))

Общие индексы.

Общие индексы характеризуют соотношение совокупности статистических процессов или явлений, состоящей из разнородных, непосредственно несоизмеримых элементов. Для определения общей стоимости различных видов продукции в качестве со–измерителя используется обычно цена за единицу продукции, для определения общей себестоимости или производственных затрат – себестоимость единицы продукции, общих затрат труда – затраты труда на производство единицы продукции и т. д.

Общее изменение товарооборота от стоимости проданных товаров можно определять, сопоставив общую стоимость проданных товаров в отчетном периоде по ценам отчетного периода с общей стоимостью проданных товаров в базисном периоде по ценам базисного периода.

Формула общего индекса товарооборота:

Аналогично индексу товарооборота рассчитываются индексы продукции, потребления и т. д.

Формула индекса товарооборота называется агрегатной (от лат. aggrega – «присоединяю»). Агрегатными называются индексы, числители и знаменатели которых представляют собой суммы, произведения или суммы произведений уровней изучаемого статистического явления. Агрегатная формула индекса – основная и наиболее распространенная формула экономических индексов. Агрегатная формула индекса показывает относительное изменение исследуемого экономического процесса и абсолютные размеры этого изменения.

Расчет агрегатного индекса цен по данной формуле был предложен немецким экономистом Г. Пааше, поэтому его принято называть индексом Пааше.

Индексы средних величин.

Средняя величина является обобщающей характеристикой качественного показателя и складывается как под влиянием значений показателя у индивидуальных элементов (единиц), из которых состоит объект, так и под влиянием соотношения их весов («структуры» объекта).

Если любой качественный индексируемый показатель обозначить через x, а его веса – через f, то динамику среднего показателя можно отразить как за счет изменения обоих факторов (x и f), так и за счет каждого фактора отдельно. В результате получим 3 различных индекса: индекс переменного состава, индекс фиксированного состава и индекс структурных сдвигов.

Индекс переменного состава отражает динамику среднего показателя (для однородной совокупности) за счет изменения индексируемой величины x у отдельных элементов (частей целого) и за счет изменения весов f, по которым взвешиваются отдельные значения x. Любой индекс переменного состава – это отношение двух средних величин для однородной совокупности (за два периода или по двум территориям). Свое название этот индекс получил потому, что он характеризует динамику средних величин не только за счет изменения индексируемой величины у отдельных элементов (частей целого), но и за счет изменения удельного веса этих частей в общей совокупности, т.е. изменения состава совокупности.

Индекс фиксированного состава отражает динамику среднего показателя лишь за счет изменения индексируемой величины x, при фиксировании весов.

Другими словами, индекс фиксированного состава исключает влияние структуры (состава) совокупности на динамику средних величин, рассчитанных для двух периодов по одной и той же фиксированной структуре весов (на уровне отчетного или базисного периода).

По аналогии можно показать динамику среднего показателя лишь за счет изменения только весов f при фиксировании индексируемой величины x. Такой индекс условно назван индексом структурных сдвигов, который определеятся при фиксировании индексируемой величины на уровне базисного периода x0 (по формуле).

⇐ Предыдущая1234

Читайте также:

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *